US 6,915,301 B2

3

sources in a single application. In the case of queries that are
parameterized with parameters being set by the portal, it in
effect provides universal, client-side query joins, allowing
the data from different databases to be combined together in
a meaningful way. As a result, context portals allow users to
attain a greater level of understanding of their data and thus
to make better business decisions.

The dynamic object properties simplify development of
data-driven applications, enabling domain experts with no
programming experience other than spreadsheet usage to use
the tool create powerful applications easily. Dynamic object
properties have several advantages over static object prop-
erties which are hard-coded into the application when com-
piled. The bound to data. Furthermore, the bindings are
applied to an entire class of object (all objects represented by
the data element node) rather than simply to a single object
(ie., the calculated value for each object is dependent upon
the row represented by the object). Another advantage is that
it eliminates the specialized coding that would otherwise be
required to perform such simple tasks as to make the color
of an object dependent on the value of a column or set of
columns from a data source. Further, more than one property
of an object can be tied to a column in one row (or even a
computation performed on all rows). In contrast to conven-
tional development tools where each object is limited to a
single link, the invention allows each column or row asso-
ciated with an object to be linked to a separate property.

The generation of code from a scene graph eliminates the
need for manual programming, thus allowing developers to
concentrate on the problem domain rather than the tool
itself. As a result, a domain expert with no programming
experience can rapidly create powerful applications. In
addition, the scene graph representation provides a powerful
way of browsing an application’s contents and making
organizational changes to an application as easily as
re-ordering the outline for a document in a word processor.

Additionally, the invention allows the representation of
individual data points to be edited as generally as the
top-level scene itself. This capability allows powerful appli-
cations to be created which support drill-down and explor-
atory navigation. This navigation allows users to attain a
greater level of understanding of their data and thus to make
better business decisions.

Other features and advantages will be apparent from the
following description and the claims.

DESCRIPTIONS OF THE DRAWINGS

FIG. 1 is a multiple-document interface for editing one or
more worlds.

FIG. 2 is a diagram illustrating an object inspector.

FIG. 3 is a diagram illustrating a property object model of
an abstract base class VcPropertyBag.

FIG. 4 is a diagram illustrating two byte code execution
classes, VCStmtCreateShape and VceStmtSetProperty.

FIG. 5 is a diagram illustrating a sample parsed property
function.

FIG. 6 is a diagram illustrating an object model of a code
generation process from a scene.

FIG. 7 is a flowchart illustrating a property sheet entry
process.

FIG. 8 is a flowchart illustrating a process for visually
manipulating an object.

FIG. 9 is a flowchart illustrating a process for byte code
generation.

FIG. 10 is a flowchart illustrating a process for obtaining
byte code execution statements for a node.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 is a flowchart illustrating a process for executing
byte code.

FIG. 12 is a diagram illustrating a graph editing system.

FIG. 13 is a diagram illustrating a wormhole.

FIG. 14 is a diagram illustrating an object model of a
wormhole.

FIGS. 15 and 16 are diagrams illustrating exemplary
wormhole usages.

DESCRIPTION

A visual business intelligence system for building appli-
cations will now be described. In this system, a developer
interactively builds a virtual world, whose building blocks
include scenes, data sources, global parameters, and
resources. A scene is a visual display of information much
like a presentation slide, except that the information may be
linked to data stored in a database. Within a scene, values
resulting from a data source are represented graphically as
user-defined data elements. Data sources are built with a
block diagramming tool which generates one or more data-
base queries. The queries can be SQL queries. Scenes are
created with a drawing editor which transparently binds data
sources to the graphical elements of the scenes. When the
virtual world is completed, an execution image of the virtual
world may be represented as byte code or a high level code
which may be subsequently interpreted. The byte code
representing the virtual world may be executed by a runtime
control such as an ActiveX control. The runtime control may
be embedded in a Web page or in any applications support-
ing the Active-X control such as Visual Basic, C or C++.

A scene may have one or more objects. Objects in a scene
are described by a set of properties and may be assigned
actions which are triggered by events such as clicking, user
proximity to the scene, and mouse location. A viewpoint is
a 3-dimensional location for viewing a scene. The location
is described in terms of the user’s current cursor X and Y
offset from the center of the scene and the user’s current
zoom level (often referred to as magnification level). A
viewpoint can be assigned a unique name and saved for
facilitating navigation within a world. Named viewpoints
can be used for manual navigation by the user or can be used
as the target for an event-based jump action.

A data element is the graphical representation of a row
resulting from a query. It is always associated with a layout
and data source, and it is constructed much like a scene. It
may contain any combination of objects, including layouts
and wormbholes to other scenes. Properties for objects mak-
ing up a data element may not only reference scene
parameters, but may also reference column names in the
associated data source.

Scenes and data elements may be represented differently
as a function of the user’s zoom level. Each representation
is called a level of detail (LOD), and is visually mutually
exclusive from other LODs. For example, an object that
starts off represented by a single dot may change into an icon
as the user zooms closer, and then into a chart as the user
zooms even closer.

Transition points between levels of detail are defined
manually by the user in terms of zoom factors. A scene or
data element may have N-1 transition points for N levels of
detail. Visibility can also be controlled on a per-object basis
by setting a “Visibility” property to a conditional expression
such as

If(UserZoom>2, true, false)

Thus, transition regions may be created where alternate
representations overlap for certain ranges of zoom levels



